1. Una muestra de aire ocupa 1 L a 25 °C y 1 atm.
a. ¿Qué presión es necesaria para comprimirla de manera que ocupe sólo 100 cm3 a esa temperatura?
2. Determine la presión en los puntos P1 y P2 si la densidad del mercurio (Hg) es 13590 kg/m3
h es d 510mm y a es de 635mm
aire
3. Calcule los siguientes volúmenes específicos
a) amoniaco 30ºC y 80% de calidad
b) freón 12 50ºC y 15% de calidad
c) agua 8MPa y 98% de calidad
d) nitrógeno 90ºk 40% de calidad
4. un tanque contiene freón 12 a 35 ºC el volumen del recipiente es de 0.1m3 e inicialmente los volúmenes del liquido y del gas son iguales se procede a introducir una cantidad adicional de sustancia alcanza los 80kg si se supone que la temperatura ha permanecido constante determine la cantidad de freón 12 introducido y el volumen final del freón 12 en fase liquida
fecha de entrega 11-07-2010
martes, 8 de junio de 2010
Suscribirse a:
Enviar comentarios (Atom)
CONTENIDO DE TERMODINAMICA II
OBJETIVO GENERAL
Resolver problemas del área térmica por medio de la aplicación de las leyes y conceptos fundamentales de la termodinámica.
SINOPSIS DE CONTENIDO
Con esta asignatura se complementan los conocimientos adquiridos en Termodinámica I profundizando en la aplicación de las leyes fundamentales de termodinámica para la resolución de problemas en el área térmica. La asignatura consta de cinco (5) unidades:
UNIDAD 1: Gases reales y relaciones termodinámicas.
UNIDAD 2: Combustión.
UNIDAD 3: Ciclos de potencia.
UNIDAD 4: Psicrometría.
UNIDAD 5: Ciclos de refrigeración.
ESTRATEGIAS METODOLÓGICAS GENERALES
· Diálogo Didáctico Real: Actividades presenciales (comunidades de aprendizaje), tutorías y actividades electrónicas.
· Diálogo Didáctico Simulado: Actividades de autogestión académica, estudio independiente y servicios de apoyo al estudiante.
Resolver problemas del área térmica por medio de la aplicación de las leyes y conceptos fundamentales de la termodinámica.
SINOPSIS DE CONTENIDO
Con esta asignatura se complementan los conocimientos adquiridos en Termodinámica I profundizando en la aplicación de las leyes fundamentales de termodinámica para la resolución de problemas en el área térmica. La asignatura consta de cinco (5) unidades:
UNIDAD 1: Gases reales y relaciones termodinámicas.
UNIDAD 2: Combustión.
UNIDAD 3: Ciclos de potencia.
UNIDAD 4: Psicrometría.
UNIDAD 5: Ciclos de refrigeración.
ESTRATEGIAS METODOLÓGICAS GENERALES
· Diálogo Didáctico Real: Actividades presenciales (comunidades de aprendizaje), tutorías y actividades electrónicas.
· Diálogo Didáctico Simulado: Actividades de autogestión académica, estudio independiente y servicios de apoyo al estudiante.
CONTENIDO DE TERMODINAMICA II
UNIDAD 1: GASES REALES Y RELACIONES TERMODINÁMICAS
1.1 Gases reales: Comportamiento PVT. Cartas generalizadas.
1.2 Relaciones termodinámicas: Relación de Maxwell. Ecuación de Clapeyron. Cambio de energía interna, entalpía y entropía para mezcla de gases ideales. Fugacidad
UNIDAD 2: COMBUSTIÓN
2.1 Combustión: Combustibles, tipos y propiedades. Proceso de combustión. Análisis de los productos de la combustión. Entalpia de formación. Primera ley aplicada a procesos de combustión. Temperatura de flama adiabática. Entalpía y energía interna de calor de reacción combustión. Segunda ley aplicada a procesos de combustión. Consideraciones acerca de los procesos reales de combustión.
UNIDAD 3: CICLOS DE POTENCIA
3.1 Ciclos de potencia: Ciclos de potencia: Ciclo Rankine, ciclo de recalentamiento, ciclo regenerativos, ciclo Otto, ciclo Diesel, ciclos sobrealimentados, ciclo Brayton, ciclo Brayton con regeneración, ciclo de turbina de gas con múltiples etapas de compresión, con interenfriamiento, y expansión con recalalentamiento ciclo de impulso por reacción.
UNIDAD 4: PSICOMETRÍA
4.1 Mezcla aire-vapor de agua y sus propiedades: modelo simplificado. Primera ley aplicada a mezcla “aire – vapor de agua”. Procesos psicrométricos más comunes: calentamiento sensible, saturación adiabática, calentamiento, enfriamiento, proceso adiabático, secado adiabático. Temperatura de bulbo húmedo y de bulbo seco. Mezclas reales y propiedades pseudo-críticas. Diagrama psicrométrico. Procesos sobre diagrama psicrométrico.
UNIDAD 5: CICLOS DE REFRIGERACIÓN
5.1 Ciclo de refrigeración por compresión de un vapor. Ciclo de refrigeración por absorción de amoníaco. Ciclo de aire de refrigeración.
1.1 Gases reales: Comportamiento PVT. Cartas generalizadas.
1.2 Relaciones termodinámicas: Relación de Maxwell. Ecuación de Clapeyron. Cambio de energía interna, entalpía y entropía para mezcla de gases ideales. Fugacidad
UNIDAD 2: COMBUSTIÓN
2.1 Combustión: Combustibles, tipos y propiedades. Proceso de combustión. Análisis de los productos de la combustión. Entalpia de formación. Primera ley aplicada a procesos de combustión. Temperatura de flama adiabática. Entalpía y energía interna de calor de reacción combustión. Segunda ley aplicada a procesos de combustión. Consideraciones acerca de los procesos reales de combustión.
UNIDAD 3: CICLOS DE POTENCIA
3.1 Ciclos de potencia: Ciclos de potencia: Ciclo Rankine, ciclo de recalentamiento, ciclo regenerativos, ciclo Otto, ciclo Diesel, ciclos sobrealimentados, ciclo Brayton, ciclo Brayton con regeneración, ciclo de turbina de gas con múltiples etapas de compresión, con interenfriamiento, y expansión con recalalentamiento ciclo de impulso por reacción.
UNIDAD 4: PSICOMETRÍA
4.1 Mezcla aire-vapor de agua y sus propiedades: modelo simplificado. Primera ley aplicada a mezcla “aire – vapor de agua”. Procesos psicrométricos más comunes: calentamiento sensible, saturación adiabática, calentamiento, enfriamiento, proceso adiabático, secado adiabático. Temperatura de bulbo húmedo y de bulbo seco. Mezclas reales y propiedades pseudo-críticas. Diagrama psicrométrico. Procesos sobre diagrama psicrométrico.
UNIDAD 5: CICLOS DE REFRIGERACIÓN
5.1 Ciclo de refrigeración por compresión de un vapor. Ciclo de refrigeración por absorción de amoníaco. Ciclo de aire de refrigeración.
Contenido de la Materia Termodinamica I
OBJETIVO GENERALAplicar las leyes fundamentales de la termodinámica en el estudio de los sistemas termodinámicos.- SINOPSIS DE CONTENIDOEsta asignatura introduce al estudiante en el análisis de los sistemas termodinámicos mediante la aplicación de las leyes fundamentales de la termodinámica. La asignatura se divide en seis (6) unidades que se especifican a continuación:
UNIDAD 1: Definiciones y conceptos fundamentales.
UNIDAD 2: Propiedades termodinámicas.
UNIDAD 3: Gases ideales.
UNIDAD 4: Calor y trabajo.
UNIDAD 5: Primera ley de la termodinámica.
UNIDAD 6: Segunda ley de la termodinámica.
UNIDAD 1: Definiciones y conceptos fundamentales.
UNIDAD 2: Propiedades termodinámicas.
UNIDAD 3: Gases ideales.
UNIDAD 4: Calor y trabajo.
UNIDAD 5: Primera ley de la termodinámica.
UNIDAD 6: Segunda ley de la termodinámica.
contenido de la materia termodinamica
UNIDAD 1: DEFINICIONES Y CONCEPTOS FUNDAMENTALES
La termodinámica desde el punto de vista de energía y entropía. Estudio de la materia desde el punto de vista macroscópico. Enfoque macroscópico de la termodinámica. Conceptos de sistema continuo. Dimensiones primarias y secundarias. Sistemas de unidades. Sistemas Internacional (SI), Sistema Inglés de Ingeniería. Sistema Métrico de Ingeniería. Sistema y volumen de control. Propiedades y estados de una sustancia. Proceso y ciclo.
UNIDAD 2: PROPIEDADES TERMODINÁMICAS
Conceptos termodinámicos de presión y temperatura. Ley cero de la termodinámica. Escala de temperatura. Volumen específico. Sustancia pura. Conceptos fundamentales sobre equilibrio de fases de una sustancia pura. Propiedades de una sustancia compresible simple. Compresibilidad isobárica e isotérmica. Energía interna. Entalpía. Calores específicos a presión y volumen constante. Uso de tablas y gráficos de propiedades termodinámicas.
UNIDAD 3: GASES IDEALES
Ecuación de gas ideal. Gases ideales. Mezcla de gases ideales. Ley de Boyle. Ley de Charles. Ley de Avogadro. Experimento de Joule. Ecuaciones de estado para gases densos. Gases reales. Factor de compresibilidad. Ecuación de Van Walls. Ecuación de Radlich y Kwong. Ecuación de Beattie-Bridgeman.
UNIDAD 4: CALOR Y TRABAJO
Definición de Trabajo. Unidad de trabajo. Expresiones de trabajo para sistemas con límite móvil, tanto termodinámicos como de otra clase. Definición de calor. Comparación entre calor y trabajo.
UNIDAD 5: PRIMERA LEY DE LA TERMODINÁMICA
Primera Ley de la termodinámica para un sistema que sigue un ciclo. Aplicación de la Primera Ley para sistemas cerrados constante. Procesos Isotérmicos. Procesos Adiabáticos. Procesos Politrópicos. Primera Ley para sistemas abiertos. Procesos de flujo permanente. Primera Ley para un volumen de control. Procesos de estado estable y flujo estable. Procesos de estado uniforme y flujo uniforme.
UNIDAD 6: SEGUNDA LEY DE LA TERMODINÁMICA
Máquinas térmicas y refrigeradoras. Postulados de Kelvin-Plank. Teorema de Claussius. Procesos reversibles y factores que le afectan. Ciclo de Carnot. Concepto de entropía. Diagramas temperatura-entropía. Proceso isoentrópico. Relación de la entropía con otras propiedades termodinámicas. Relaciones isoentrópicas para gases perfectos. Segunda Ley de la termodinámica. Aplicación de la Segunda Ley a sistemas cerrados. Cambios de entropía en sistemas cerrados durante procesos irreversibles. Producción de entropía. Principios de incremento de la entropía. Aplicaciones de la Segunda Ley a un volumen de control.
La termodinámica desde el punto de vista de energía y entropía. Estudio de la materia desde el punto de vista macroscópico. Enfoque macroscópico de la termodinámica. Conceptos de sistema continuo. Dimensiones primarias y secundarias. Sistemas de unidades. Sistemas Internacional (SI), Sistema Inglés de Ingeniería. Sistema Métrico de Ingeniería. Sistema y volumen de control. Propiedades y estados de una sustancia. Proceso y ciclo.
UNIDAD 2: PROPIEDADES TERMODINÁMICAS
Conceptos termodinámicos de presión y temperatura. Ley cero de la termodinámica. Escala de temperatura. Volumen específico. Sustancia pura. Conceptos fundamentales sobre equilibrio de fases de una sustancia pura. Propiedades de una sustancia compresible simple. Compresibilidad isobárica e isotérmica. Energía interna. Entalpía. Calores específicos a presión y volumen constante. Uso de tablas y gráficos de propiedades termodinámicas.
UNIDAD 3: GASES IDEALES
Ecuación de gas ideal. Gases ideales. Mezcla de gases ideales. Ley de Boyle. Ley de Charles. Ley de Avogadro. Experimento de Joule. Ecuaciones de estado para gases densos. Gases reales. Factor de compresibilidad. Ecuación de Van Walls. Ecuación de Radlich y Kwong. Ecuación de Beattie-Bridgeman.
UNIDAD 4: CALOR Y TRABAJO
Definición de Trabajo. Unidad de trabajo. Expresiones de trabajo para sistemas con límite móvil, tanto termodinámicos como de otra clase. Definición de calor. Comparación entre calor y trabajo.
UNIDAD 5: PRIMERA LEY DE LA TERMODINÁMICA
Primera Ley de la termodinámica para un sistema que sigue un ciclo. Aplicación de la Primera Ley para sistemas cerrados constante. Procesos Isotérmicos. Procesos Adiabáticos. Procesos Politrópicos. Primera Ley para sistemas abiertos. Procesos de flujo permanente. Primera Ley para un volumen de control. Procesos de estado estable y flujo estable. Procesos de estado uniforme y flujo uniforme.
UNIDAD 6: SEGUNDA LEY DE LA TERMODINÁMICA
Máquinas térmicas y refrigeradoras. Postulados de Kelvin-Plank. Teorema de Claussius. Procesos reversibles y factores que le afectan. Ciclo de Carnot. Concepto de entropía. Diagramas temperatura-entropía. Proceso isoentrópico. Relación de la entropía con otras propiedades termodinámicas. Relaciones isoentrópicas para gases perfectos. Segunda Ley de la termodinámica. Aplicación de la Segunda Ley a sistemas cerrados. Cambios de entropía en sistemas cerrados durante procesos irreversibles. Producción de entropía. Principios de incremento de la entropía. Aplicaciones de la Segunda Ley a un volumen de control.
BIBLIOGRAFÍA
·Cengel, Y. y Boles, M. (2006) Termodinámica. Quinta Edición. Mc Graw-Hill.
· Faires, V. Termodinámica. Uteha.
· Holman J.P. Termodinámica. Mc Graw-Hill.
· J Keenan, J. y Keyes, G. Tabla de Gases John Wiley and Sons Inc.
· Keenan, J. y Keyes, G. Propiedades Termodinámicas del Vapor de Agua. John Wiley and Sons Inc.
· Keenan, J. y Keyes, G. Tablas de Vapor. John Wiley and Sons Inc.· Somtag, R y Van Wylen, G.
Introducción a la Termodinámica Clásica y Estadística. Limusa.
Van Wylen, G.. Fundamentos de Termodinámicas. Limusa.
· Faires, V. Termodinámica. Uteha.
· Holman J.P. Termodinámica. Mc Graw-Hill.
· J Keenan, J. y Keyes, G. Tabla de Gases John Wiley and Sons Inc.
· Keenan, J. y Keyes, G. Propiedades Termodinámicas del Vapor de Agua. John Wiley and Sons Inc.
· Keenan, J. y Keyes, G. Tablas de Vapor. John Wiley and Sons Inc.· Somtag, R y Van Wylen, G.
Introducción a la Termodinámica Clásica y Estadística. Limusa.
Van Wylen, G.. Fundamentos de Termodinámicas. Limusa.
No hay comentarios:
Publicar un comentario