viernes, 5 de junio de 2009

DIAGRAMAS DE PROPIEDADES

Para comprender de forma completa el comportamiento de las sustancias puras es necesario tener en cuanta los diagramas de propiedades. Estos diagramas son tres: el diagrama Temperatura vs. Volumen específico (T-v), el diagrama Presión vs. Volumen específico (P-v) y el diagrama Presión vs. Temperatura (P-T).

Estos diagramas son extraídos de las proyecciones sobre los planos que determinan los ejes de las llamadas superficies P-v-T. Y se dice superficies por el simple hecho de que no es una sino dos, la superficie para una sustancia que se contrae al congelarse y la superficie para la sustancia que se expande al congelarse.
Como es de esperarse, los diagramas varían de acuerdo a si la sustancia se contrae o se expande cuando se congela, pero de dichas variaciones se hablará más adelante.

Diagrama T-v
En este diagrama se pueden apreciar inicialmente tres regiones: la región de líquido comprimido, que es la región a la izquierda de la campana, la región de vapor sobrecalentado que es región a la derecha de la campana y la región de Líquido + Vapor saturados que es aquella que se halla dentro de la campana. La que se encuentra marcada como línea de P constante es toda la línea que comienza en la región de líquido comprimido, pasa por dentro de la campana y termina en la región de vapor sobrecalentado. No es solo el último segmento sino la línea completa.
Nótese el carácter ascendente que tiene la línea de presión constante de izquierda a derecha, ya que en el diagrama P-v, ésta no sube sino que baja.

A la línea que pertenece a la campana y baja hacia la izquierda del punto crítico la podemos llamar línea de líquido saturado, y a la línea que baja hacia la derecha del punto crítico la podemos llamar línea de vapor saturado.

Es importante mencionar que la campana está formada por los puntos de líquido saturado y de vapor saturado de infinitas líneas de presión constante, de modo que el que se presenta en el gráfico es solo un caso particular a cierta T y P determinadas.


Diagrama P-v



En comparación con el diagrama T-v, este diagrama tiene dos grandes diferencias. La primera es que la línea que era de presión constante pasa a ser una línea de temperatura constante, y la segunda, que dicha línea desciende de izquierda a derecha en lugar de ascender.


Diagrama P-T
Este diagrama también se conoce como diagrama de fase porque es posible identificarlas al estar separadas por tres líneas. La línea de sublimación es la que separa la fase sólida de la fase vapor, la de vaporización separa la fase líquida de la fase vapor y la línea de fusión separa la fase sólida de la fase líquida. Nótese que hay una desviación en la línea de fusión dependiendo de si la sustancias se expande o se contrae al congelarse.
Las tres líneas antes mencionadas convergen en el punto triple, el cual es el estado en el cual las tres fases de una sustancia pueden coexistir en equilibrio, es un estado donde se puede tener hielo, líquido y vapor al mismo tiempo.

CONTENIDO DE TERMODINAMICA II

OBJETIVO GENERAL
Resolver problemas del área térmica por medio de la aplicación de las leyes y conceptos fundamentales de la termodinámica.

SINOPSIS DE CONTENIDO
Con esta asignatura se complementan los conocimientos adquiridos en Termodinámica I profundizando en la aplicación de las leyes fundamentales de termodinámica para la resolución de problemas en el área térmica. La asignatura consta de cinco (5) unidades:
UNIDAD 1: Gases reales y relaciones termodinámicas.
UNIDAD 2: Combustión.
UNIDAD 3: Ciclos de potencia.
UNIDAD 4: Psicrometría.
UNIDAD 5: Ciclos de refrigeración.

ESTRATEGIAS METODOLÓGICAS GENERALES
· Diálogo Didáctico Real: Actividades presenciales (comunidades de aprendizaje), tutorías y actividades electrónicas.
· Diálogo Didáctico Simulado: Actividades de autogestión académica, estudio independiente y servicios de apoyo al estudiante.

CONTENIDO DE TERMODINAMICA II

UNIDAD 1: GASES REALES Y RELACIONES TERMODINÁMICAS

1.1 Gases reales: Comportamiento PVT. Cartas generalizadas.
1.2 Relaciones termodinámicas: Relación de Maxwell. Ecuación de Clapeyron. Cambio de energía interna, entalpía y entropía para mezcla de gases ideales. Fugacidad

UNIDAD 2: COMBUSTIÓN

2.1 Combustión: Combustibles, tipos y propiedades. Proceso de combustión. Análisis de los productos de la combustión. Entalpia de formación. Primera ley aplicada a procesos de combustión. Temperatura de flama adiabática. Entalpía y energía interna de calor de reacción combustión. Segunda ley aplicada a procesos de combustión. Consideraciones acerca de los procesos reales de combustión.

UNIDAD 3: CICLOS DE POTENCIA

3.1 Ciclos de potencia: Ciclos de potencia: Ciclo Rankine, ciclo de recalentamiento, ciclo regenerativos, ciclo Otto, ciclo Diesel, ciclos sobrealimentados, ciclo Brayton, ciclo Brayton con regeneración, ciclo de turbina de gas con múltiples etapas de compresión, con interenfriamiento, y expansión con recalalentamiento ciclo de impulso por reacción.


UNIDAD 4: PSICOMETRÍA

4.1 Mezcla aire-vapor de agua y sus propiedades: modelo simplificado. Primera ley aplicada a mezcla “aire – vapor de agua”. Procesos psicrométricos más comunes: calentamiento sensible, saturación adiabática, calentamiento, enfriamiento, proceso adiabático, secado adiabático. Temperatura de bulbo húmedo y de bulbo seco. Mezclas reales y propiedades pseudo-críticas. Diagrama psicrométrico. Procesos sobre diagrama psicrométrico.

UNIDAD 5: CICLOS DE REFRIGERACIÓN

5.1 Ciclo de refrigeración por compresión de un vapor. Ciclo de refrigeración por absorción de amoníaco. Ciclo de aire de refrigeración.

Contenido de la Materia Termodinamica I

OBJETIVO GENERALAplicar las leyes fundamentales de la termodinámica en el estudio de los sistemas termodinámicos.- SINOPSIS DE CONTENIDOEsta asignatura introduce al estudiante en el análisis de los sistemas termodinámicos mediante la aplicación de las leyes fundamentales de la termodinámica. La asignatura se divide en seis (6) unidades que se especifican a continuación:
UNIDAD 1: Definiciones y conceptos fundamentales.
UNIDAD 2: Propiedades termodinámicas.
UNIDAD 3: Gases ideales.
UNIDAD 4: Calor y trabajo.
UNIDAD 5: Primera ley de la termodinámica.
UNIDAD 6: Segunda ley de la termodinámica.

contenido de la materia termodinamica

UNIDAD 1: DEFINICIONES Y CONCEPTOS FUNDAMENTALES
La termodinámica desde el punto de vista de energía y entropía. Estudio de la materia desde el punto de vista macroscópico. Enfoque macroscópico de la termodinámica. Conceptos de sistema continuo. Dimensiones primarias y secundarias. Sistemas de unidades. Sistemas Internacional (SI), Sistema Inglés de Ingeniería. Sistema Métrico de Ingeniería. Sistema y volumen de control. Propiedades y estados de una sustancia. Proceso y ciclo.

UNIDAD 2: PROPIEDADES TERMODINÁMICAS
Conceptos termodinámicos de presión y temperatura. Ley cero de la termodinámica. Escala de temperatura. Volumen específico. Sustancia pura. Conceptos fundamentales sobre equilibrio de fases de una sustancia pura. Propiedades de una sustancia compresible simple. Compresibilidad isobárica e isotérmica. Energía interna. Entalpía. Calores específicos a presión y volumen constante. Uso de tablas y gráficos de propiedades termodinámicas.

UNIDAD 3: GASES IDEALES
Ecuación de gas ideal. Gases ideales. Mezcla de gases ideales. Ley de Boyle. Ley de Charles. Ley de Avogadro. Experimento de Joule. Ecuaciones de estado para gases densos. Gases reales. Factor de compresibilidad. Ecuación de Van Walls. Ecuación de Radlich y Kwong. Ecuación de Beattie-Bridgeman.

UNIDAD 4: CALOR Y TRABAJO
Definición de Trabajo. Unidad de trabajo. Expresiones de trabajo para sistemas con límite móvil, tanto termodinámicos como de otra clase. Definición de calor. Comparación entre calor y trabajo.

UNIDAD 5: PRIMERA LEY DE LA TERMODINÁMICA
Primera Ley de la termodinámica para un sistema que sigue un ciclo. Aplicación de la Primera Ley para sistemas cerrados constante. Procesos Isotérmicos. Procesos Adiabáticos. Procesos Politrópicos. Primera Ley para sistemas abiertos. Procesos de flujo permanente. Primera Ley para un volumen de control. Procesos de estado estable y flujo estable. Procesos de estado uniforme y flujo uniforme.

UNIDAD 6: SEGUNDA LEY DE LA TERMODINÁMICA
Máquinas térmicas y refrigeradoras. Postulados de Kelvin-Plank. Teorema de Claussius. Procesos reversibles y factores que le afectan. Ciclo de Carnot. Concepto de entropía. Diagramas temperatura-entropía. Proceso isoentrópico. Relación de la entropía con otras propiedades termodinámicas. Relaciones isoentrópicas para gases perfectos. Segunda Ley de la termodinámica. Aplicación de la Segunda Ley a sistemas cerrados. Cambios de entropía en sistemas cerrados durante procesos irreversibles. Producción de entropía. Principios de incremento de la entropía. Aplicaciones de la Segunda Ley a un volumen de control.

BIBLIOGRAFÍA

·Cengel, Y. y Boles, M. (2006) Termodinámica. Quinta Edición. Mc Graw-Hill.
· Faires, V. Termodinámica. Uteha.
· Holman J.P. Termodinámica. Mc Graw-Hill.
· J Keenan, J. y Keyes, G. Tabla de Gases John Wiley and Sons Inc.
· Keenan, J. y Keyes, G. Propiedades Termodinámicas del Vapor de Agua. John Wiley and Sons Inc.
· Keenan, J. y Keyes, G. Tablas de Vapor. John Wiley and Sons Inc.· Somtag, R y Van Wylen, G.
Introducción a la Termodinámica Clásica y Estadística. Limusa.
Van Wylen, G.. Fundamentos de Termodinámicas. Limusa.